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ABSTRACT
In solidification, when the process is limited by diffusion of released latent heat or

solute, often the two-phase interface forms finger-like shapes called dendrites, whose tips
are nearly paraboloidal in form. For a pure material solidifying into an undercooled melt,
if surface energy and gravity are negligible, a well-known solution due to Ivantsov (1947)
describes the steady growth with a paraboloidal interface. We construct a regular per-
turbaLlon t- this solution for a downward growing axisymmetric dendrite, based on the
smallness of a buoyancy parameter (7 to examine the effects of buoyant flow on the so-
lidification. The analytic solution predicts that generally the buoyancy enhances growth
and changes the shape of the interface, giving a sharper tip and wider base. These effects
depend strongly on the Prandtl number, and also on the Stefan number (undercooling).
The results compare woll i. , perimcnt., of Hau.ng and! Giicksman (196la) up to
G -, 5000, but overpredict convective effects for higher G.



BUOYANT CONVECTION IN DENDRITIC SOLIDIFICATION

INTRODUCTION
Solidification processes are important in a variety of contexts, and are of particular

interest in the processing of materials. The small-scale details of the solidification can
affect the resulting microstructure, and hence the bulk properties, of the final product.
This practical context has led to a great deal of research toward understanding the details
of solidification processes.

In many typical solidification situations, an initially smooth solid surface becomes
morphologically unstable as it grows; small bumps grow into long fingers, which in turn
grow side branches, yielding a tree-like stucture called a dendrite. Experiments have shown
that the growing tip of the dendrite is closely approximated by an axisymmetric paraboloid
for many materials (or an elliptic paraboloid for some others).

The present work deals with the effects on this growing dendrite tip of buoyant flow in
the molten phase, driven by the release of latent heat upon solidification. (With the pos-
sibility of processing materials in a microgravity environment, prediction of gravitational
effects takes on practical importance.) To gain some insight into the effects of buoyancy
on dendritic solidification while keeping the analysis tractable, the simplest situation is
considered; we analyze an isolated axisymmetric dendrite growing downward into an un-
dercooled, pure melt, when buoyantly induced velocities are small compared to the speed
of the solidification front and surface energy is negligible. We find a solution in the form
of a regular perturbation expansion in the small gravitational parameter (G); the solution
shows explicitly the dependence upon the Prandtl number (P) and the Stefan number (S,
the dimensionless undercooling).

There has been much previous work on dendrites with convection, although a rela-
tively small proportion applies directly to natural convection near isolated dendrites. The
experimental study by Huang and Glicksman (1981a,b) using succinonitrile shows that
buoyant convection can significantly affect both the growth speed and the tip radius of
isolated dendrites, when the growth is relatively slow. They found that a dendrite growing
downward grew faster, with a smaller tip, than one growing upward in the same condi-
tions. Similar experiments by Tirmizi and Gill (1987), for an ice-water system, shows
qualitatively similar results with platelike dendrites, and with down and up switched due
to water's increasing density with temperature near freezing.

Ananth and Gill (1988) present a theoretical analysis of the same problem considered
here, but with a different simplifying approximation, giving a different region of appli-
cability. They assume the dendrite is a paraboloid, and essentially apply a coordinate
expansion, formally valid within a fraction of a tip radius from the very tip. They de-
rive a pair of coupled nonlinear ordinary differential equations which include the nonlinear
effects of buoyancy in this region, which they solve numerically for some choices of the
parameters. In contrast, we assume the buoyancy is relatively small in order to use an
expansio,, in the gravitational parameter about the known paraboloidal solution (Ivantsov,
1947). This linearizes the huoyant ,'rnnvection effctQ, u'hich allow- for an explicit aralytic
solution showing all parameter dependence, formally valid within many tip radii from the
very tip. This solution predicts that buoyancy affects not only the growth Peclet number
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(Pe, the dimensionless product of growth speed and dendrite tip size) of the dendrite, but
also its shape; the perturbed dendrite is not paraboloidal.

PROBLEM STATEMENT
Consider a smooth dendrite of a pure substance, growing into an undercooled quiescent

melt. We assume the dendrite is axisymmetric, with the axis vertical, growing downward
(see Figure 1), and that the growth is steady in the reference frame of the solid-liquid
interface. Surface energy and non-equilibrium effects at the interface are neglected, so the
liquid solidifies at the equilibrium melting temperature Tm,; as a result, the entire solid
phase is isothermal, at Tm,. The material properties in each phase axe assumed constant,
with no density change upon solidification. The Boussinesq approximation is applied in
the melt. Then the governing equations in the melt are the conservation of energy, mass,
and momentum:

u VT = KV 2 T , (1)
V.u=O , (2)

(u. V)u -1Vp+ VV 2 u-a(T- T..)g (3)
P

with the boundary conditions

at the interface: T =Tm , (4)

u i , (5)

-pLVi .f= -k(VT) • fi (6)

deep into the fluid: T - T. , (7)

u-V , (8)

where T is the temperature, Tm is the equilibrium melting temperature, To, is the (under-
cooled) temperature of the undisturbed melt, r, is the thermal diffusivity, k is the thermal
conductivity, a is the thermal expansion coefficient, L is the latent heat (per unit mass), u
is the velocity (relative to the interface), V is the axial growth speed of the dendrite (to be
determined in the solution), p is the density, p is the reduced pressure, v is the kinematic
viscosity, g is the acceleration of gravity, i is a unit vector upward, and fi is a unit vector
normal to the interface (outward). Condition (6) says that the latent heat released at the
interface must be removed by conduction into the melt, while (5) and (8) say that the solid
and the undisturbed melt are motionless in the laboratory reference frame.

To nondimensionalize the problem, a length or velocity scale is required. Near the
dendrite tip, the relevant length scales are the tip radius R, the thermal boundary layer
thickness tc/V, and the viscous boundary layer thickness v/V. All of these involve one
of the unknowns, either tip radius R or growth speed V. As a result, the dimensionless
solution predicts the growth Peclet number P = RV/2K,, but cannot predict R and V
separately. This problem, of selecting which of a family of solutions is realized in nature,
is inherent in the problem as posed (due to the neglect of surface energy), and is common



to the orginal (non-buoyant) solution of Ivantsov (1947), the analysis of Ananth and Gill
(1988), and the present work. For a unique physical solution, an additional selection
criterion is needed, e.g., based on the morphological stability of the dendrite tip.

We nondimensionalize the temperature by T = (T - To)/(T,, - To,), the velocity by
ii = u/V, and lengths by the thermal boundary layer thickness R = x/(K/V), then drop
the tildes. We introduce an axisymmetric stream function T to conserve mass, and use
a vorticity formulation to eliminate the pressure. Then the dimensionless equations for
energy, stream function, and vorticity are

u. VT=V 2T , (9)

__V2 (10)

\,r(U. -_ W )U =PV2W - G-08T (11)

with the boundary conditions

at the interface: T = 1 , (12)

T = r 2 /2, (13)

V = ri , (14)
.. fi=S(VT).fi , (15)

deep into the fluid: T -*0 , (16)

--+r2/2 , (17)

where

U = V ( , W= xu (18)

(r, €, z) are cylindrical coordinates with corresponding unit vectors ', , , and the three
dimensionless parameters are Stefan number (undercooling) S (T,m - To)Cp/L, Prandtl
number P - v/K, and a gravitational parameter G - ga(Tm - T.)K/V 3 (like a Grashof
number times Prandtl number squared), and Cp is the specific heat. The undercooling
S must be smaller than 1 for the rate of solidification to be limited by thermal diffusion,
as assumed here; otherwise, the solidification is very rapid and attachment kinetics limit
growth.

The problem formulated above, of solidification of a pure substance into an under-
cooled melt, limited by diffusion of released latent heat, is analogous to a solidification
problem for a binary alloy, under certain assumptions. For a two-component mixture, the
solid and liquid phases in local thermodynamic equilibrium at the interface generally have
different compositions. For example, considering the major component the solvent and the
other the solute, typically the solute is less soluble in the solid phase, i.e.. its concentration
is smaller in the solid than in the liquid. Thus, as solidification proceeds, not only is latent
heat released, but also the excess solute. When the mass diffusivity D is much smaller
than the thermal diffusivity K (the usual case) and the latent heat L is not large. then the
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speed of solidification is limited by diffusion of the rejected solute into the melt, and the
process is nearly isothermal.

Formally, if latent heat and thermal variations are negligible, then this alloy problem
reduces to the identical dimensionless form above, with the following correspondences:
T --* C, ,c -+ D, S -+ (Ci-C.)/(Ci-C,), P --* Sc - v/D, G --+ g03(Ci-C,,)D/V 3 , where
C is concentration of solute, with values C, in the solid, C1 in the liquid at the interface,
and C.. deep into the melt, D is the diffusivity of the solute in the melt, Sc is the Schmidt
number, and 3 is a solutal coefficient of expansion, defined by (p - p )/p = 3(C - C,").
Therefore, the perturbation solution derived below applies to this binary solidification
problem controlled by mass diffusion, as well as the case of a pure substance.

PERTURBATION SOLUTION
This problem presents several difficulties: the interface between the solid and liquid

phases is a free boundary, the energy flux condition at the interface (15) is nonlinear, and
the convection terms in the transport equations (9) and (10) are nonlinear. However, when
buoyancy is negligible (G -- 0), a solution is well known, due to Ivantsov (1947). In this
case, there is no motion of material (in the reference frame of the quiescent melt), and
the solid-liquid interface is a paraboloid of revolution, moving steadily along its axis as
the liquid solidifies. In the reference frame of the interface, the flow is uniform everywhere
(u =

To get some indication of the effects of gravity while avoiding the difficulties of the
nonlinear convection terms, we consider the case where buoyancy is relatively small (G <
1), and seek a solution as a small perturbation to the Ivantsov solution.

The equations suggest a regular perturbation in G:

T=To+GT+... ,

T = TO0+G T, +" ,(19)

w = wo + Gwi +

Then the lowest order quantities are the Ivantsov solution, which is most easily expressed
in paraboloidal coordinates ( , ri, 0) (see Figure 2), where

v_- + Z 2 + Z vr+ z - z

2 2 12 (20)

so that r=2V _ , z= -r,

and 0 is the azimuthal angle. (For comparison, these are not the same parabolic coordinates
as in Ananth and Gill, 1988.) The thermal field and uniform flow are

TO= Ei(H) ' 0 2 = 2  ,/  wO0 , (21)
E1 (Ho) 2

and the position of the interface is given by

r)= Ho , such that: Ho t1H°E(Ho) = S , (22)
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i.e., to lowest order the interface is a paraboloid whose dimensionless size (or Peclet number:
Pe = Ho = RV/2K, R is the tip radius) is determined by the undercooling S. (This solution
thus represents a whole family of physical solutions with V and R varying inversely; as
mentioned above, an additional selection criterion is ueeded for a ,nique solution.)

We explicitly consider buoyant effects on the shape of the dendrite by expanding the
interface position also in a regular perturbation in G:

q= H( ) =Ho + GHI( )+. ,(23)

Here El is a standard exponential integral:

E,, (x) - jC_ ds
n

At the next order, we first see the effects of buoyancy. Linearizing about the lowest
order solution, the equations, in parabolic coordinates, become:

_T, aT1  &PI ( T , (24)

- 1 a 2 I, 1 a2 q, 1

o 2 ° _ 72]
2-9 

- T-' (26)

with the boundary conditions

at 7 =H 0 : T1 +H 1 TT' , (27)

P- = -°I =0 (28)
a77

H, + H= -SHiTo + HiHoTo" + Ho a&J (29)

as r7 ---+ c : T , --0 , -* 0 ,(30)

where primes denote ordinary derivatives, and the interface conditions have been trans-
ferred to 71 = H0 by expanding T and %P in Taylor series in 7 about H0 .

The flow at this order is driven only by the lowest order temperature gradient. So we
can solve for the perturbation flow first, from (25), (26), (28), and (30b), then use the flow
to find the temperature and interface shape perturbations.

Because the driving temperature gradient (To) depends only on one coordinate (71)
and the interface conditions are prescribed on a coordinate surface (71 = Ho), we seek a
solution that is separable in parabolic coordinates. Assuming the vorticity is of the form

,( ] f [ (7) ,(31)
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then the vorticity equation (26) becomes

Pf" + f'- f = (32)77 0 r7E, (Ho)

The general solution is

W= (1 - P)E,(Ho) [E2 (7) + AE 2 -) + B (33)

where A and B are arbitrary constants, and E2 is an exponential integral.
The corresponding stream function is not in simple separable form, due to the com-

bination ( + 17) in the denominator of the coefficient in (25). (That factor arises from the
metric coefficients in paraboloidal coordinates.) However, assuming a stream function of
the form

,p( ,77) = 2g(77) + h(71) ,(34)

then (25) becomes

77 9" = -2f ,(35)

Sh"=-2(?f+g) , (36)

and the general solution is

IP = 1 - P)E (H2 { 2[g (77) + APg-i) + B! + C71 + D]
(1 - P)EI (Ho) P + 1gQ )-± +D

+ [h (77)+Ap2h( )7C7'2D 7 (1-log1)+E77+F)} (37)
P

where gi(rq) - E 2(71) - E3(q), h1(rj) - 2E 3 (77) - E2(7), and A, B, C, D, E, and F are
arbitrary constants (A and B the same as in (33)).

The boundary conditions on the separable parts _(77) and h(7 ) (i.e., the two functions
in square brackets above) are

at 77=H0 g=g'=0 , h=h'=0 , (38)

asi 7-o: g-0 , h+0 (39)

Unfortunately, no choice of the six arbitrary constants can satisfy these six conditions,
because most of the terms do not decay as r- c. Only the first two terms in each set of
brackets decay, and discarding the other terms to satisfy conditions far away (39) leaves
only one free constant, A. Conversely, we can satisfy no slip and no penetration at the
interface (38), but the resulting perturbation flow grows without, bound away from the
interface. Moreover, whatever solution we get will grow without bound in , i.e., along the
dendrite far from the tip. (Looking for more general homogeneous separable solutions to
add on will not help; they will not have the right asymptotic form as -* .)
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Clearly, a solution of the above form cannot be uniformly valid in space. However, we
can find a locally valid solution that satisfies the interface conditions. This solution is valid
within a (dimensionless) distance of O(G - 1 ) from the tip in all directions; we call this the
tip solution. (See Figure 3.) Along the dendrite, far from the tip, the nonlinear effects of
buoyant convection become important. We expect a strongly convecting boundary-layer
in this region, but as it is far downstream from the tip, it should have negligible effects in
the tip region. Far from the dendrite, a distance of O(G - 1 ), is well outside the thermal
and viscous boundary layers (unless P -- G - 1 ). In this outer region, the fluid is isothermal
(T = 0) and the flow is irrotational: it matches the inner flow to the uniform flow of
the undisturbed fluid. That is, far from the dendrite, the (potential) flow departs from
separable form to conserve mass. So we seek a local solution about the tip that becomes
potential flow far away.

We choose B = 0 so the vorticity decays in ??. The corresponding terms represent
Pouiselle pipe flow, without the pipe (u = r2 i). We also choose C = 0 because the
corresponding terms, which represent stagnation point flow (u = -ri + 2zi), grow faster
in r than the remaining terms. Another reason to discard the flow terms with coefficients
B and C is that they would imply that the d-ndrite induces strong flow far ahead of the
tip, which is physically unreasonable.

Then the other constants are given by the interface conditions (38):

A - g'(Ho )

gj(Ho/P)
D = -[g,(Ho) + APgi(Ho/P)] , (40)

E = -[h'(Ho) + APh'(Ho/P) - 2DlogHo]

F = -[h1 (Ho) + AP 2h,(Ho/P) + 2DHo(J. - log Ho) + EHo] = 0

(It can be shown that F is identically zero.) This completes the tip flow solution.
To interpret these results, note that the flow terms gl(7) and hj(r/) in (37) repre-

sent buoyant rotational flow driven by the lowest order temperature gradient; they decay
exponentially in 71. The flow terms with coefficient A describe rotational flow (needed
to satisfy no-slip at the interface) that decays exponentially in r/P, i.e., this describes
the viscous boundary layer. The terms with coefficient D represent a mass sink dis-
tributed along the positive z axis whose strength increases linearly with z (as r -+ 0,
u --* -(2z/r) i + log(r 2 /4z)i). The velocity from these terms grows as log TI, i.e., far away,
the dendrite looks like a mass sink, to feed the rising, growing bound Lry layer. Finally, the
flow proportional to E is uniform flow (u = i). which is needed to satisfy no penetration
at the interface. So outside the thermal and viscous boundary layers. the perturbation
flow becomes irrotational, as expected.

Using this flow solution, we can apply the same approach as aboxe to solve the thermal
problem (24), (27), (29), and (30a) for the perturbations to the temperature (T) and to
the dendrite shape (H1 ). Assume solutions of the form

TZ ( , 7) = ( - 1 p ( 7) + q ( ?) ( 4 1
Hj( ) = Ho[( - 1)Ao ± Al] (



where A0 and A, are constants to be determined. Then the problem separates to give

(?7p)' 77' --T g ,(42)

(rlq')' + ?7q' -To'(g + 1 h) ,(43)

with the boundary conditions

at 77=HO; p =-AoTO , (44)

q = -, To'(45)

2Ao -S [-A 0 H0 T' +±p'] (46)

Al = -s 1 [(Ao - AI)HoTo' + q'] (47)

as 7-4 p-*O , q--* 0 ,(48)

where g(ij) and h(77) are the flow fuictions defined by (34), each consisting of several terms
as shown in (37), and the identity Ej + 77E"' = -q was used to simplify the boundary
conditions.

The general solution can be found by applying variation of parameters for each of the
terms in g and h:

(7)=(1 -- P)E 2(Ho) I{P,(77) + APP2 (77) + DP3 (77)

+±J[E2 (TA)- E(77)]±+K[r7±+1]) (49)

q (q) (1 2 )Eq(H) 7)+APq2 (/) + Dq3(r7) ±Eq4(r/) ±LE~I(71) ±M} (,50)

where J, K, L, M! are arbitrary constants and

PI (71) =-I{4[E 2 (27) - 2E,(2r1)] -3E,(7j)[E 2(77) -EI( 7)] - 2c-[E2 (j) - 2E1 (77)]}
12

P2(7 = 1 {rE2 7 - E1 (77)[2PE(- -(1 +2P)E 3 (1') ±2E2(-)-E()
2 P P ~ P P

+ 1[7+ 1][G 2 2 (77) - G 2 1 (77 ) - 2GI2 (77) + 2G, 1(27 ) + G02(i7) - Goi(r7 )]}

P37)= -{ [E2 (77) - E1 (77)][I - log 71] + [q + 1JE 2 &I}

q(7)= 1-E2(77) + G'EI(77) -2E,(2 7) ,(51)

q27)= EI(7i)[(1 - P)E3 (2-77-(2 - P)E2 ( 77) + EP P P

+ I [(P -1)G 21(i1) +(2- P)G,1d77) -Gol(i 7)]

q,3(/) = 2{E( 1 )[1 -log tj]+ c-'(log? - 2)-E E2(77))
17~'



and E" 2)(q) = (s) ds ,

00 S (52)
E- , ( j )E(s) ds

Applying the boundary conditions (44-48) determines the constants. For the temper-
ature to decay as 17 -- oo then K = MU = 0. Manipulating the boundary conditions to
eliminate A0 and A1 shows that J and L are determined by

Hop'(Ho) + (2 + Ho)p(Ho) = 0 ,

Hoq'(Ho) + (1 + Ho) q(Ho) = -p(Ho) (53)

Then the shape perturbation is given by

Ao = Sp(Ho)/Ho (54)

A1 = Sq(Ho)/Ho

This completes the solution for the O(G) perturbation. (For one particular Prandtl number
P = 1 the some of the forms above are undefined, but the limit P -+ 1 is well defined.)

The complicated form of the solution makes its interpretation difficult. Interpretation
can be aided by considering the opposite limits of small or large Peclet number H0 , where
asymptotic forms can be used for all the transcendental functions, leading to simpler
results at the leading order. While both limits give useful approximate results, the limit
of small H0 is a singular limit, all the different terms becoming unbounded at 0, and the

the asymptotic forms are rather complicated.

For large H0 , applying the relations given in the Appendix yields the following asymp-
totic forms for the main results:

1 17P+7 1
S (P+ 1)0 8(P+ 1)2H02 +  (H3(55)

1___ 11P +9 1_(55

A, 1 - 1+ 2 ±0( 1
4 (P + 1) 8(P + 1) o H2)

In this limit, at leading order Ao decays in Ho and A1 approaches a constant (maximum
0.25).

For small H0 . the asymptotic forms are more complicated due to logarithmic singular-
ities at the origin. The results are given as quotients, because inverting the denominators
would give an infinite number of terms like O(log-(Ho)) before terms of O(HO).
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A0 2 log(Ho) [2 log(2) - +dilog(P + 1) + log(P + 1) p p

[ 2 6 212PP- log2(p) log(p ) +2 P ~ 2 72 p 1
133 2

p2p1 p> o2(p)(y1+log(P+l)(-Y+l) P P4 2-21 _4_log2()(+1)

/ P 2 12P 4

+log(P) (Y+1)(-- + )- + - (Y +1) (-2P+ 1)2- 6 +O(Hlg2(H))

6 4 241-2)6
(P - 1) {-21og3(HO) + log 2(Ho)[2log(P) - -5] + log(Ho) [log(P) (41 + 3)- 672 - 107- 3]

+ [(log(P) -I- 1) (21Y2 + 3-y)] + O(Ho log 3(Ho))} (56a)

A1 = {log2(H0) [-' log(2) + Pdilog(P + 1) + log(P + 1) ( - 2P 23 + -+2+

P 2 (p) + log( 2p2 _ 2 +2 og( P 2 + (2P -1T2 3(P -1)]

+ log(Ho) log(2) log(P) - 2 log(2)(8, + 13) + Pdilog(P + 1) (2- + 4)
SP5-7 13p 2  13 2(p

+log(P+l) 4 PP + 4 7 -y+ 3 6 ± +±2P + + +Plog 2 (P)(-y+2)

7r
2 4p27 13p 2  1) -+ (P - (3

+log(P) ( + 3 P 6 2P- -1 2 +(P-l) +
(1 3/ 63 6+ lt2lg )8- + 6 + lg(2) 8-Y3 261- g2 ogP 6) + P d il og ( P + l1) ( + 4 , + 3 )

+ /
_t12 P4- 

1
2 2 2 6 13p 2 P -y+ 9 3

+og(P ± 1) (- 4 + - + -1- + 2 1 + 3 f 3 P) )P
k. 3 2 6P+~- 6 2 +3±

+ p 1og 2 (p) (2 + 4-y + 3)

-~ I r2 2p 2 'Y2  PI 2  13P 2'y I 3p2  3f'
log(P) ± -- t- - -+ - 2P-- -+ - 1

K12 4 3 2- 6 6 2 /

±2-1)(2 2 +y (± 2± (P -- 3)+! ±)] ±O(Holog3(HO))}

(P - 1) {21og4(HO) 4 log3 (Ho) [2 log(P) + 81 + 7] + log2 (Ho) [- log(P) (61 + 5) + 12y 2 + 2 1, + 8]
+ log(Ho) [- log(P) (6-1,2 + 10 + 3) + 8_Y3 + 21-y2 + 161 + 3]

+ [(- log(P) + -y + 1) (2-y3 +5-2 + 37)] + O(H 0 log 4(Ho))} (56b)
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where -y is Euler's constant (0.5772...), and the dilogarithm function is defined by

dilog(x) j lgs)

following Abramowitz and Stegun (1972). (The lengthy algebraic calculations preceding
these results were verified using a symbolic mathematics program called Mathematica.)

RESULTS
The above perturbation solution describes in detail the buoyant flow and the resulting

thermal field throughout the melt. An example of the buoyant flow is illustrated in Figure
4; in the reference frame of the immobile solid material of the dendrite, this is an instanta-
neous view of the complete (unsteady) flow as the interface sweeps through. The velocity
vectors show the formation of a rising buoyant layer near the dendrite, which satisfies the
no-slip condition at the solid surface. In this example (H0 = 1, P = 2) the temperature
field decays over a dimensionless length scale of about 1; the dropping buoyancy gives a
local maximum in the vertical velocity at about that distance. Farther away, the flow is
drawn inward to feed the growing buoyant layer. Directly ahead of the dendrite tip there
is a weak upward flow, and at (horizontally) farther positions the flow is inward and even
downward. In this example, the net effect is that the thermal boundary layer (not shown)
is slightly compressed at the tip, leading to enhanced tip growth.

The main results of interest are A0 and A1 , which describe how buoyancy changes
the dendrite's growth Peclet number Pe and shape. The dependence of A0 and A1 on
the parameters is shown in the next two figures. Figure 5 shows the dependence on the
lowest order Peclet number H0 , which is is monotonically related to the Stefan number S
(dimensionless undercooling) by the Ivantsov solution (22). The perturbation to the Peclet
number is proportional to the difference of the two curves:

Pe = RV/2tc = Hj.=o = H o[1 + G(A 1 - A o)] , (57)

where G is the buoyancy parameter. As can be seen, over most of the parameter space
(H0 , P). buoyancy increases the Peclet number (A1 > Ao), i.e., growth is enhanced by
convection of released latent heat away from the tip. For large undercooling (Ho >- 1,
S >- 0.6) the difference (A, - A 0 ) is relatively large, though in practice large S means
rapid solidification, so G is small.

It is surprising that there is a range (P = 0.2, H0 - 0.1) where the curves cross,
predicting a very slight decrease in the Peclet number from buoyant convection. The
interpretation may be that, when viscosity is unimportant (P < 1) and the dendrite is
moderately small, the inward and downward velocities near the tip compress the thermal
boundary layer horizontally more than the weak vertical velocity directly ahead of the
tip compresses it vertically. Then the net effect would be a smaller thermal gradient and
slower growth, at the tip.

The departure of the shape of the dendrite from a paraboloid depends only on A 0 . If
it were a paraboloid, then the dimensionless interface position H( ) would be constant, so
the departure is H( ) - H0 (1 + GAI) = GHoAo( - 1). The fact that A0 is positive means
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that the tip ( < 1) is relatively smaller, but the dendrite widens further down ( > 1),
because the buoyant flow redistributes the heat away from the tip towards the base of the
dendrite.

Comparing Figures 5a, 5b, and 5c shows that the Prandtl number P has a large effect
on the magnitudes of A0 and A1 , as well as some effect on their Ho-dependence. Figure 6
shows the dependence on Prandtl number P, for H0 = 1, i.e., S = 0.596. It can be seen
that when P is large, buoyant effects are relatively small. This makes sense, in that the
high viscosity inhibits flow in the thermal layer, near the no-slip interface, so little heat
is convected. At the other extreme, the results become nearly independent of P, because
the viscous layer near the interface is much thinner than the thermal layer, so the buoyant
flow is limited primarily by inertia.

The asymptotic approximations of the solution for large and small H0 are compared
with the actual solution (for P = 2) in Figure 7. (At each extreme, both the leading-order
approximation and the next higher-order approximation are shown.) It is apparent that the
asymptotic forms converge well, so are useful in those limits. This is fortunate, because
the actual solution becomes difficult to calculate at both extremes, due to exponential
dependence for large H0 and due to logarithmic singularities for small H0 .

To see how the Ivantsov solution is modified by buoyancy, Figure 8 shows growth
speed V versus tip radius R, holding constant the physical parameters, i.e., undercooling,
material properties, and gravity. This represents the family of possible physical solutions
corresponding to one particular dimensionless solution. (The lack of a unique physical
solution comes from neglecting surface energy in the problem statement.) Then the form
of the relation of R and V is A B

R= A B(58)V +V 4 '

where A = 2iH 0 and B = 2go(Tm -To )K2 Ho(Aj - Ao). For the Ivantsov solution,
B = 0, giving a straight line on the logarithmic plot, and for large V the buoyant solution
is close to this line. But for slow growth (small V, large buoyant parameter G) the buoyant
solution departs from the Ivantsov solution, giving relatively faster growth for a given tip
radius (or a smaller tip for a given speed).

Choosing one member of this family of solutions requires some selection criterion
outside the scope of this paper. One criterion that seems to match experimental data well
(Huang ind Glicksman, 1981a) comes from considering the morphological stability of the
dendrite tip; the criterion is of the form

2Kdo

VR- a (constant) , (59)

where K is the thermal diffusivity, do TmyCp/L 2 is a capillary length, Tm is the melting
temperature, 7 is the surface energy, Cp the volumetric specific heat, and L the volumetric
latent heat of fusion. Different theories give different values for the constant a, but the
value determined experimentally by Huang and Glicksman (1981a) for succinonitrile is
a = 0.0195. This selection criterion is also shown on Figure 8; following this criterion
shows that buoyant convection gives both faster growth and a smaller tip radius, relative
to the non-buoyant (Ivantsov) case.
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The predictions of the buoyant theory, augmented by the selection criterion a -
0.0195, are compared to the experiments of Huang and Glicksman (1981a) on succinonitrile
in Figure 9. The values used for the physical constants are: r, = 1.16 x 10- 3cm 2/s, P =
22.8, L = 885.1cal/mole, Cp = 38.25cal/mole K, a = 5.0 x 10- 4 K- 1, do = 2.7 x 10- 7cm,
and g = 980cm/s 2 (from Huang and Glicksman, 1981b and 1981a).

At high Stefan number S (undercooling), buoyant convection is slow compared to the
interface motion (the buoyancy parameter G is small), and so buoyant effects are negligible.
As the Stefan number decreases, the growth speed V also decreases, and the buoyant
parameter G becomes significant. Both theory and experiments show that, relative to the
non-buoyant case, buoyant convection increases the growth Peclet number Pe, enhances the
speed V of growth, and decreases the radius R of the dendrite tip. However, for very small
undercooling, the theoretical predictions fail to match the experiments, overpredicting
convective effects, due to neglecting the nonlinear inertial terms. Nonetheless, considering
that the buoyant perturbation solution is based on the assumption that the buoyancy
parameter is small (G < 1), the range of agreement is surprisingly good (up to G -, 5000).

CONCLUSIONS
Because of the importance of solidification in the processing of materials, a theoretical

understanding of the details of solidification is of practical interest. Currently, processing
materials in a microgravity environment is possible, but very expensive, so prediction
of gravitational effects in solidification may be helpful in deciding when the expense is
justified.

The present work considers one special case: buoyant convection effects on an iso-
lated dendrite of a pure substance, solidifying downward into an undercooled melt. To
further simplify the problem, it is assumed that the dendrite is smooth and axisymmetric,
that surface energy effects are negligible, and that buoyant velocities are small relative
to the speed of the solidification interface. The dimensionless problem depends on three
parameters: Stefan number S = (Tmn - To)Cp/L (undercooling), Prandtl number P, and
buoyancy parameter G = ga(Tm - Too)K/V', where G < 1 by the last assumption above.

The buoyancy parameter G is the product of a Rayleigh number and the Prandtl
number P. For small P, inertia limits the flow and G gives a dimensionless measure of the
importance of buoyant convection. However, for large Prandtl number, viscosity limits the
flow, and a better measure of the importance of buoyancy is the Rayleigh number, G/P.
One measure that covers both cases is G/(P + 1).

The solution is constructed as a regular perturbation in G about the non-buoyant
paraboloidal solution due to Ivantsov (1947). The first-order (O(G 1 )) perturbation quan-
tities describing the buoyant flow and temperature throughout the melt, and the perturbed
interface position, are given in closed form above, showing explicitly the dependence on
S and P. The perturbation solution is not uniformly valid in space; it applies within a
dimensionless distance of O(G - 1 ) > 1 from the dendrite tip.

The main result of interest is the dimensionless position of the solid-liquid interface
in axisymmetric parabolic coordinates ( , 77):

interface at: ,1 = H( ;S,P,G) = Ho(S){1 + G[( - 1)Ao(S,P) + A,(S.P)]} , (60)
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where H0 is the Ivantsov solution, given by (22), the buoyant perturbations A0 and A1 are
given by (54), and Figures 5 and 6 show that A1 > A0 > 0 (with the exception discussed
in the Results section).

This result predicts two main effects of buoyant convection: enhanced growth and a
modified shape. At the very tip of the dendrite, = 0, and the dimensionless radius of
curvature is 27, so the growth Peclet number is

RV
Pe =2 = HIk=o = HO[1 + G(A 1 - A0 )] (61)

where R and V are the dimensional tip radius and growth speed. Thus, because G and
(A1 - Ao) are positive, buoyancy enhances growth for a downward-growing dendrite. (Fig-
ure 5c shows the exception: for small P and a narrow range of H0 , the difference A 1 - A0 is
slightly negative, predicting slightly reduced growth at the tip, presumably from convection
inward and downward nearby.)

The dependence of the dimensionless interface position H on in (60) shows that the
dendrite is not a paraboloid; because A0 > 0, the tip is smaller, and toward the root the
dendrite widens, relative to a paraboloid. This buoyant modification of the dendrite shape
is a unique feature of the current work; previous analyses assume a paraboloid shape.
Furthermore, while the dimensionless solution cannot predict R and V separately, the
use of any selection criterion of the form R 2 V = constant (such as criteria based on tip
stability) will predict both faster growth and a smaller tip due to buoyant convection of
released latent heat away from the tip, toward the root.

The magnitude of these buoyant effects depends strongly on the Prandtl number of the
melt, as shown in Figure 6. For large P, the viscous length scale is larger than the thermal
layer, and the no-slip solid interface inhibits convection, so buoyant effects are relatively
small. However, for small P, the viscous layer by the interface is thin relative to the thermal
layer, so the buoyant convection is effectively inviscid, limited by inertia, and buoyant
effects are relatively large. Thus, conclusions based on experiments or calculations for a
high-Prandtl number material (e.g., succinonitrile: P = 23) should be applied cautiously
to the processing of low-Prandtl number materials (e.g., metals), and vice versa.

Due to the neglect of nonlinear inertial terms, the present work overpredicts buoyant
effects when G is large. However, the theory (with the selection criterion based on sta-
bility) matches the experiments well up to G - 5000, despite the formal assumption that
G < 1. In comparison, the nonlinear calculations of Ananth and Gill (1988) match the
experiments well even for large G; their selection criterion involves choosing the Grashof
number to fit the experimental Peclet number. Their method, which assumes the dendrite
is a paraboloid, requires numerically solving a pair of coupled nonlinear ordinary differ-
ential equations for each set of parameters, and their published results are limited to one
Prandtl number (P = 23.1). The results of the present work are expressed in closed form,
and are relatively easy to calculate, involving only a few different transcendental functions
and several arithmetic combinations. (Rough predictions can be made by interpolation
using Figures 5 and 6.)

While the perturbation solution applies only for a downward growing dendrite, the
perturbations (by assumption) are linear in the buoyancy parameter G, and it is tempting
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to apply the same solution to an upward growing dendrite by merely reversing the sign
of G. We speculate that this may give reasonable results if the magnitude of G is small
enough, so that the speed of the interface as it sweeps through, freezing the material,
overwhelms the instantaneous local fluid velocity. However, for larger buoyancy, i.e., slow
solidification, the thermal layer of fluid rising toward the tip of the dendrite could keep
rising past the tip, forming a plume above the dendrite. Such a plume would change the
character of the flow completely, so the perturbation solution would not apply.

The buoyant perturbation solution can also be interpreted to apply to the growth of a
dendrite of a binary alloy, if the process is controlled by the mass diffusion of solute rejected
at the solidification front (as discussed in the Problem Statement). This would be the case
if the mass diffusivity D of the solute is much smaller than the thermal diffusivity K in
the melt, and if the latent heat is negligible. Then the temperature is effectively constant
(T,,), and the transport problem reduces to convection and diffusion of solute, measured
by its concentration C. To interpret the solution for this alloy problem, substitute C for
T, nondimensionalize using D instead of K, and the new dimensionless parameters become
S -+ (C - Co)/(C - C.), P --* Sc =_ v/D, and G -+ g3(C - C.)D/Y3 , wh,: -, C. is
the concentration in the solid, C1 in the liquid at the interface, and Co deep into the
melt, Sc is the Schmidt number, and ,3 is a solutal coefficient of expansion, defined by
(p - p.W)po = P(C - C.o).

The methods employed here may also apply to dendrites shaped more like elliptic
paraboloids. The key element that makes the perturbation analysis feasible here is the
existence of a simple solution to the nonbuoyant case, depending only on one coordinate in
a separable coordinate system, that gives the shape of the free boundary and accounts for
the nonlinear flux condition at the interface. The family of such solutions is quite extensive
(Canright and Davis, 1989), including one for an elliptic paraboloid. (In fact, solutions
are known for binary alloys when both thermal and solutal variations are important, or
ternary alloys when thermal variations are negligible, so the perturbation approach may
be applicable to such cases as well.) The detailed form of a buoyant perturbation to the
elliptic-paraboloid basic state would be more complicated than the solution given here, in
that the flow would depend on all three spatial coordinates, and the special functions may
also be more complicated. We speculate that the qualitative features in that case may be
similar to those of the present case.
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APPENDIX: SPECIAL FUNCTIONS IN SOLUTION

In the perturbation solution, the various functions (g's, h's, p's, q's) describing the
stream function and temperature perturbations are expressed in terms of exponential in-
tegrals E, and integrals thereof.
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The exponential integrals are standard functions, and can be found in standard refer-
ences, e.g., Abramowitz and Stegun (1972). Some of their properties are recounted here,
for convenience. The definition is

E.,(x) = CX ds , (62)

where we are only concerned with non-negative integer values for n. Some special cases
are

Eo(x) E(x)ds .(63)

Differentiating the definition shows that the derivatives are

dTxEn(x) = -E,,_(x) .(64)

Integrating the definition by parts gives

En + l (x) = 1 [ex - xEn(X)] (65)
n

This can be used to reduce all such exponential integrals E, to forms involving only the
special function El. At the origin, E1 has a logarithmic singularity

00 (- X )k ,( 
6

Ej(x) = -(log x + Y) - E , (66)
k=1

where y 0.5772 is Euler's constant. For large arguments, the asymptotic series is

El (x)~ - =X 00 k1(67)
k=O _~

The function Ei2 ) is less common, but has applications to stellar atmospheres. It was
first defined by van de Hulst (1948); we use his notation:

E 2 )() (s) ds (68)s

Switching the order of integration, this can also be expressed as

Ei 2 )(x) = j -lgs ds. (69)

which is more convenient for numerical calculation. (Kourganoff, 1952, Appendix I) shows
this result and many others related to exponential integrals.) Near the origin, the following
expansion, due to van de Hulst (1948), converges quickly:

E 2 )(x) 1 (logx + _)2 + 7r+ 2 + t-!)(EiW =212k !  (70)

k=1
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For large arguments, integration by parts gives the following asymptotic series:

k=1 l

(We have not seen this or subsequent results published previously.)

Van de Hulst (1948) defined certain functions he called Gn,; the functions we call
Gmn are similar to, but different from, his functions. We use the definition

G-.(x) j , (m )E,(s)ds , (72)

where the parameter P is the Prandtl number for our purposes. Following the methods
used by Chandrasekhar (1950, Appendix I), i.e., integration by parts and the identities for
E., all of the Gmn, we need can be reduced to simpler functions:

G02(x) = -P2e-,/PEi(x) + (P + P 2)Ei(3x) ,

Gil(x) = ezEl(x/P) + Pe-'/PE(x) - xEI(x)EI(x/P) - (P + 1)F,(4x),

G1 2 (x = 1 [Pe-O + (1 - x)rK-xEi(s'r/P) _ (p 2 + Px)ez/rPEi(x)

+ X2Ei(x)EI(x/P) + (P2 - 1)EI(Ox)]

G2 1(x) = 1 [eo - (1 + x)c-'El(x/P) + (P - x)-'/PEI(x) (73)

x
2

+ -El(x)EI(x/P) - (P - )E )

G2 2 ( 3 I(P + 1 - X)7 1h - P(1 + x -
(p2 +pX _ x2)-,- ( p 2)-

_ (p 2 ± Pxr - x 2 )e-/PEI(x) - x-EI(x)EI(x/P) ± (p 2 ± -)EI(3x)
P P

where 1 + 1 The one exception is G01 , which apparently cannot be reduced to

standard functions. By definition,

1Gox) = El(s)ds (74)P

Switching the order of integration yields a form more amenable to numerical computation:

-Go, (x)= - log -ds (75)
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Near the origin, the series representation is

1 Go, W) = 1 (log X + -Y)' - 2 _ log2 p _ dilog(P + 1)

+ (-log X + -Y) - P + 14 ± ((log X + -t) + 1 (p2 + 4P - 1)X2 (76)

+±(-(log X+ Y) I(2p3 +9p2 +18P -1)) 1 8X3 + O(X4log X)

where the dilogarithm function is defined by dilog(t) - Ix '"'ds, following Abramowitz

and Stegun (1972). (The general form for the nlth term is not apparent.) Integration by
parts gives the asymptotic series for large arguments:

1 P~zk=1k =1

Using the reductions above, all the perturbation functions (g's, h's, p's, q's) can be
expressed in forms where the only special functions are El, E() and Go,:

h1 (xW = 1-[(1 + (~- (x + X2 ~)EI()

2
hi~) =-xe' -+(x + e~ 2 -6 2(x

P2 (X) = 1 { 2p2 p+1eX+ p2 ±+6P + 1 + 2 x)e-'Ei(x/P)

+ (1 + X) [6(Ei (x)EI (x/P) - Go i(x)) + 2p 3 - 3p 2 - 6P -1 El OiX)]

P3 (X) = (109gX - 1)e' -(1 ±X) [(logx - )El(x) +E W~)x]

q, (x) = 1 {2e7ZEj(x) + [E 2(X) - 4EI (2x)]}

12x P= OX + 2p2+ 3P+1 I P -ixe'E xPq22(X = 2x P e P2 /P)

+ [2(Eli(x)EI(x/1P) - 1 Goi(X)) + p3 p 2 3P -1 El (,3x)]

q3 (x) = 2{1(log x -2)ez [(log x - 1)Ej (x) + Ei2(x
(78)

To calculate these functions, standard mathematical software libraries have built-in
functions for the exponential integral and routines for evaluating the integrals (69) and

(2)
(75) defining E, and Goi. For extreme values of the arguments, the appropriate series
for E(2 ) and Go, may be more accurate than numerical integration.
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FIGURE CAPTIONS

Figure 1. Problem schematic: Relative to the growing dendrite surface, the liquid moves
steadily up and through the interface as it becomes solid. Axisymmetry is assumed; gravity
is downward. Far from the dendrite the liquid is undercooled and in uniform motion.

Figure 2. Parabolic coordinates: Lines of constant 77 (solid) and (dashed) are shown;
equal steps in il and correspond to equal distances along the z-axis.

Figure 3. Regions of flow: The perturbation solution applies within a distance O(G - 1 )
from the dendrite tip. In the buoyant layer further downstream convection is nonlinear.
In the far field the flow is irrotational but not of separable form.

Figure 4. Buoyant flow: an example of the instantaneous flow field (velocity vectors) near
the dendrite tip, relative to the solid material (the interface moves downward at speed V):
H0 = 1 (S = 0.6), P = 2.

Figure 5. Interface perturbations A0 (solid) and A1 (dashed) as functions of H0 : (a)
P = 20; (b) P= 2; (c) P = 0.2.

Figure 6. Interface perturbations A0 (solid) and A1 (dashed) as functions of P, for Ho = 1.

Figure 7. Asymptotic approximations: For P = 2, A 0 (7a) and A1 (7b) are shown (solid),
with small-H 0 asymptotic forms to O(1) (as in Eq. 56) (dashed) and to O(H 0 ) (dotted),
and large-Ho asymptotic forms using one term (dashed) and two terms (see Eq. 55)
(dotted).

Figure 8. Comparison with Ivantsov solution: For one dimensionless solution (S = 0.02,
H0 = 0.004, P = 22.8) the relation between growth speed V (cm/s) and tip radius R
(cm) is shown, using material constants for succinonitrile: perturbation theory (solid),
and Ivantsov solution (dashed). The selection criterion or = 0.0195 is also shown (dotted).

Figure 9. Comparison with experiments: Both perturbation theory (solid) and the Ivantsov
solution (dashed) (both using the selection criterion a = 0.0195) are shown with experi-
mental data points (dots) from Huang and Glicksman (1981): (a) Peclet number PC versus
Stefan number S; (b) growth speed V (cm/s) versus Stefan number S; (c) tip radius R
(cm) versus Stefan number S; (d) buoyancy parameter G versus Stefan number S.
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